517

Stabilization of Monovalent Nickel in Aqueous Solutions by a Saturated Tetra-aza-macrocyclic Ligand

Nusrallah Jubran,^b Gregory Ginzburg,^{†b} Haim Cohen,^a and Dan Meyerstein^{a,b*}

^a Nuclear Research Centre-Negev, Beer Sheva, Israel

^b Chemistry Department, Ben Gurion University of the Negev, Beer Sheva, Israel

The planar form of the complex *C-meso*-1,4,5,7,7,8,11,12,14,14-decamethyl-1,4,8,11tetra-azacyclotetradecanenickel(1) {[Ni(L¹)]⁺} is shown to be stable in aqueous solutions, with $t_{\frac{1}{2}} > 100$ h and the formal potential of the couple [Ni(L¹)]²⁺/[Ni(L¹)]⁺ is -0.98 V vs. standard calomel electrode; redox reactions involving this couple were studied and compared with those of the couple [Ni(L²)]²⁺/[Ni(L²)]⁺ (L² = *C-meso*-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetra-azacyclotetradecane).

Many nickel(1) complexes with tetra-aza-macrocyclic ligands have been prepared in **aprotic** media,¹ which are unstable in aqueous solution.² The mechanism of their reactions with water was not reported but mechanisms A and B seem plausible. In mechanism A, reaction $(1)^2$ is followed by reaction (2), or by hydride transfer to the ligand if the latter is $LNi^{I} + H_{2}O-H_{3}O^{+} \rightarrow LNi^{III}-H + OH^{-}-H_{2}O$ (1)

$$LNi^{III}-H + H_2O-H_3O^+ \rightarrow LNi^{III} + H_2 + OH^--H_2O$$
 (2)

unsaturated. No report on hydrogen formation in the decomposition of LNi^{I} is known to us, although LNi^{II} complexes have been shown to be electrocatalysts for hydrogen production.^{3a-c} In the alternative mechanism B, the monovalent nickel complexes might lose their ligand *via* reaction (3),

[†] Deceased, August 5th, 1981.

by analogy with processes observed for monovalent copper complexes. $^{\rm 3d}$

$LNi^{1} + nH_{2}O - nH_{3}O^{+} \rightarrow Ni^{+}_{aq} + LH^{n+}_{n} + nOH^{-} - nH_{2}O$ (3)

It was recently shown that the planar form of the nickel(II) complex of 1,4,8,11-tetramethyl-1,4,8,11-tetra-azacyclotetradecane [formed by methylation of Ni¹¹(cyclam)] is substitution-inert,⁴ whereas isomeric pentaco-ordinated complexes are formed by reactions of the permethylated ligand with divalent cations.⁵ We have studied the redox properties of the planar form of *C-meso*-1,4,5,7,7,8,11,12,-14,14-decamethyl-1,4,8,11-tetra-azacyclotetradecanenickel(II) [Ni(L¹)][ClO₄]₂ in aqueous solutions as we hoped that the methyl substituents on the nitrogen atoms would inhibit reaction (3).

The complex $[Ni(L^1)][ClO_4]_2$ was synthesized by methylation of the complex $[Ni(L^2)][ClO_4]_2$ with Mel^{4b} and recrystallized from triply distilled water. The i.r. spectrum (KBr) showed no N–H stretching absorption and the n.m.r. spectrum was in good agreement with that reported by Barefield.^{4a}

 $[Ni(L^1)]^{2+}$ is polarographically reduced in aqueous solutions at pH 7.0 or 11.5 in a quasi-reversible single-electron process with a half-wave potential of -1.05 V vs. S.C.E. (standard calomel electrode), independent of the nature of the supporting electrolyte NaCl, NaClO₄, or Me₄NCl. In all cases a small prewave presumably due to adsorption was observed. Similar results were observed in cyclic voltammetric experiments with a hanging mercury drop electrode, indicating that $[Ni(L^1)]^+$ is relatively stable (Figure 1).

Preparative electrolysis was carried out with a mercury pool as a working electrode at -1.2 V vs. S.C.E. (solution composition $3 \times 10^{-4} \text{ M-}[\text{Ni}(\text{L}^1)][\text{ClO}_4]_2$, 0.1 M-Me₄NCl, pH 7.0). Coulometric calculations proved the one-electron nature of the reduction process. The product has an absorption band with $\lambda_{\max} 335 \pm 2 \text{ nm}$ and $\epsilon_{\max} 3600 \pm 500 \text{ dm}^3 \text{ mol}^{-1}$ cm⁻¹. After 18 h the absorption at 335 nm had decreased by <10% indicating $t_{\frac{1}{2}}$ {[Ni(L¹)]⁺} > 100 h under these conditions.‡ Thus the results demonstrate that [Ni(L¹)]⁺ is considerably more stable than the planar form of 1,4,8,11tetramethyl-1,4,8,11-tetra-azacyclotetradecanenickel(I), which decomposes even in tetrahydrofuran by a relatively fast second-order process,⁶ or [Ni(L²)]⁺.§² Polarograms measured in completely reduced solutions show a one-electron oxidation wave close to the [Ni¹¹(L¹)] reduction wave; analysis during

Figure 1. Cyclic voltammograms at a hanging mercury drop electrode at pH 7.0; supporting electrolyte 0.1 M Me₄NCl; scan rate 50 mV s⁻¹. The voltammogram for (A) was measured directly after the formation of the drop.** (A) 3×10^{-4} M-[Ni(L¹)]-[ClO₄]₂; (B) 1×10^{-3} M-[Ni(L²)][ClO₄]₂.

the electrolysis gives a common oxidation-reduction polarographic wave. Bubbling oxygen through the reduced solution resulted in the back formation of $[Ni^{11}(L^1)]$. Acidifying the solution to pH 1.0 with HCl caused decomposition of $[Ni(L^1)]^+$ whereas the use of HClO₄ precipitated a white compound which is stable in the absence of air.

It is of interest that the cyclic voltammogram of $[Ni(L^1)]^{2+}$ (Figure 1) suggests a formal potential of -0.98 V vs. S.C.E. for the couple $[Ni(L^1)]^{2+}/[Ni(L^1)]^+$, compared with -1.42 Vvs. S.C.E. for the couple $[Ni(L^2)]^{2+}/[Ni(L^2)]^+$. This result seems surprising, although spectral data suggest that the crystal-field splitting due to L¹ is smaller than that due to L²,^{4b} as substitution of the hydrogen atoms bound to the four ligating nitrogen atoms by methyl groups, which are electron donors, is expected to stabilize the higher oxidation state. We suggest that $[Ni(L^1)]^{2+}$ is considerably less stabilized by hydration, owing to its hydrophobic substituents, than $[Ni(L^2)]^{2+}$. A similar effect for analogous complexes in MeCN solution was recently reported.^{Ic}

In order to study fast redox reactions involving $[Ni(L^1)]^+$ we used the pulse-radiolysis technique^{3c} using the linear accelerator at the Hebrew University of Jerusalem; for details, see ref. 7. $[Ni(L^1)]^{2+}$ was reduced by $e_{a_1}^-$ and CO_2^{--} , ¶ and the rates of these reactions are summarized in Table 1. The electronic spectrum of $[Ni(L^1)]^+$ thus formed is identical to that of the product obtained electrochemically. The rates of reaction of $[Ni(L^1)]^+$ with O_2 , $[Co(NH_3)_6]^{3+}$, and $[Ru(NH_3)_6]^{3+}$ were measured, and these outer-sphere reductions with $[Ni(L^1)]^+$ are about ten times slower than those² with $[Ni(L^2)]^+$, in agreement with their relative formal potentials. However, $[Ni(L^1)]^+$ does not seem to react with N₂O, possibly owing to

 $[\]ddagger$ The decomposition of $[Ni(L^1)]^+$ under these conditions might be due to oxygen penetration into the flow-through optical cells used.

[§] However, our electrochemical results (Figure 1) seem to indicate that $[Ni(L^2)]^+$ has a somewhat longer half-life than that reported by Tait *et al.*²

[¶] Argon-saturated solutions containing $2-20 \times 10^{-5}$ M-[Ni(L²)] [ClO₄]₂ and 0.1 M -Bu^tOH at pH 7.0 were used for the e_{aq}^{-1} reductions, and argon- or N₂O-saturated solutions containing $2-10 \times 10^{-4}$ M-[Ni(L¹)][ClO₄]₂ and 0.1 M-HCO₂Na at pH 4.7 and 11.5 for the CO $\frac{1}{2}$ reductions.

^{**} The shape of the voltammogram changes when the solution is in contact with mercury prior to the measurements. The cathodic peak is shifted to lower potentials, *i.e.*, to the hump detected on the cathodic peak in Figure 1. The voltammogram then indicates a nearly reversible electrode process. A detailed study⁸ suggests that this change in the shape of the voltammogram is due to a surfacecatalysed isomerization of $[Ni(L^1)]^{2+}$.

Table 1. Rate constants for the reactions of the nickel complexes of the ligands L^1 and L^2 .

Reaction	L ^{1a}	L^{2b}
e_{ad}^- + NiL ²⁺	$(8 \pm 1) \times 10^{10}$	5.6×10^{10}
$CO_2^{-1} + NiL^{2+}$	$(4 \pm 2) \times 10^{6}$	5.7×10^9
$NiL^{+} + Co(NH_{3})_{6}^{3+}$	$(1.7 \pm 0.2) \times 10^4$	1.9×10^{5}
$NiL^{+} + Ru(NH_{3})_{6}^{3+}$	$(3.0 \pm 0.3) \times 10^7$	3.8×10^8
$NiL^+ + O_2$	$(4.0 \pm 1.5) \times 10^7$	1.6×10^9
$NiL^+ + N_2O$	< 0.1	3.9×10^7

^a This work, units of dm³ mol⁻¹ s⁻¹. ^b From ref. 2.

steric hindrance as the suggested reaction mechanism involves atom transfer.² Alternatively this might be due to a more positive value of the formal potential for the $[Ni(L^1)]^{+/}$ $[Ni(L^1)]^{3+}$ couple. The low rate of reduction of $[Ni(L^1)]^{2+}$ by CO_2^{-} is surprising in view of the relative formal potentials of $[Ni(L^1)]^{2+}$ and $[Ni(L^2)]^{2+}$ and seems to indicate that the reduction² of $[Ni(L^2)]^{2+}$ by CO_2^{-} proceeds mainly via a bridged mechanism, but that of $[Ni(L^1)]^{2+}$ is hindered by steric factors.

In conclusion these preliminary results indicate that $[Ni(L^1)]^+$ is relatively stable over a wide pH range presumably owing to the inhibition of reaction (3) by the methyl substituents.

Received, 15th January 1982; Com. 035

References

- (a) D. C. Olson and J. Vasilevskis, *Inorg. Chem.*, 1969, 8, 1611;
 (b) F. V. Lovecchio, E. S. Gore, and D. H. Busch, *J. Am. Chem. Soc.*, 1974, 96, 3109;
 (c) J. Y. Becker, J. B. Kerr, D. Pletcher, and R. Rosas, *J. Electroanal. Chem.*, 1981, 117, 87.
- 2 A. M. Tait, M. Z. Hoffman, and E. Hayon, *Inorg. Chem.*, 1976, 15, 934.
- 3 (a) B. Fisher and R. Eisenberg, J. Am. Chem. Soc., 1980, 102, 7361; (b) a homolytic decomposition of LNi^{III}-H, as suggested by a referee, is very endothermic and therefore unreasonable; (c) D. Meyerstein, Acc. Chem. Res., 1978, 11, 43; (d) M. Freiberg, J. Lilie, and D. Meyerstein, Inorg. Chem., 1980, 19, 1908.
- 4 F. Wagner, M. T. Mocella, M. J. D'Aniello, A. H.-J., Wang and E. K. Barefield, *J. Am. Chem. Soc.*, 1974, 96, 2625; (b) F. Wagner and E. K. Barefield, *Inorg. Chem.*, 1976, 15, 408.
- 5 E. K. Barefield and F. Wagner, *Inorg. Chem.*, 1973, 12, 2435;
 K. D. Hodges, R. G. Wollmann, E. K. Barefield, and D. Hendrikson, *Inorg. Chem.*, 1977, 16, 2746; R. Buxtort, W. I. Steinman, and T. A. Kaden, *Chimia*, 1974, 28, 15.
- 6 M. J. D'Aniello, Jr. and E. K. Barefield, J. Am. Chem. Soc., 1976, 98, 1610.
- 7 H. Cohen, L. J. Kirschenbaum, E. Zeigerson, M. Jaacobi, E. Fuchs, G. Ginzburg, and D. Meyerstein, *Inorg. Chem.*, 1979, 18, 2763; E. Zeigerson, G. Ginzburg, D. Meyerstein, and L. J. Kirschenbaum, J. Chem. Soc., Dalton Trans., 1980, 1243.
- 8 N. Jubran, G. Ginzburg, and D. Meyerstein, to be published.