Stabilization of Monovalent Nickel in Aqueous Solutions by a Saturated Tetra-aza-macrocyclic Ligand

Nusrallah Jubran,^b Gregory Ginzburg, ^{†b} Haim Cohen,^a and Dan Meyerstein^{a,b*}

^a*Nuclear Research Centre-Negev, Beer Sheva, Israel*

^b*Chemistry Department, Ben Gurion University of the Negev, Beer Sheva, Israel*

The planar form of the complex *C-meso-I* ,4,5,7,7,8,11 ,I 2,14,14-decamethyl-I ,4,8,11 tetra-azacyclotetradecanenickel(i) $\{[Ni(L^1)]^+\}$ is shown to be stable in aqueous solutions, with $t_2 > 100$ h and the formal potential of the couple $[Ni(L^1)]^2+/[Ni(L^1)]^+$ is -0.98 V *vs.* standard calomel electrode; redox reactions involving this couple were studied and compared with those of the couple $[Ni(L^2)]^2^+/[Ni(L^2)]^+$ (L² = C-meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetra-azacyclotetradecane).

Many nickel(1) complexes with tetra-aza-macrocyclic ligands LNi¹ + H₂O-H₃O+ \rightarrow LNi¹¹¹-H + OH⁻-H₂O (1) have been prepared in aprotic media,¹ which are unstable in aqueous solution.2 The mechanism of their reactions with water was not reported but mechanisms **A** and B seem plausible. In mechanism **A,** reaction **(1)2** is followed by reaction *(2),* or by hydride transfer to the ligand if the latter is

$$
LNiIII-H + H2O-H3O+ \to LNiIII + H2 + OH--H2O (2)
$$

unsaturated. No report on hydrogen formation in the decomposition of LNi^T is known to us, although LNi^T complexes have been shown to be electrocatalysts for hydrogen production.^{3a-c} In the alternative mechanism **B**, the mono-**7** Deceased, **August** 5th, 1981. valent nickel complexes might lose their ligand *via* reaction **(3),**

by analogy with processes observed for monovalent copper complexes.^{3d}

$LNi^1 + nH_2O-nH_3O^+ \rightarrow Ni_{\text{av}}^+ + LH_{\text{av}}^+ + nOH^- - nH_2O$ (3)

It was recently shown that the planar form of the nickel (ii) complex of **1,4,8,1l-tetramethyl-1,4,8,1l-tetra-azacyclo**tetradecane [formed by methylation of NiII(cyclam)] is substitution-inert,⁴ whereas isomeric pentaco-ordinated complexes are formed by reactions of the permethylated ligand with divalent cations.⁵ We have studied the redox properties of the planar form of C-meso-1,4,5,7,7,8,11,12,-**14,14-decamethyl-l,4,8,11 -tetra-azacyclotetradecanenickel(I1)** $[Ni(L^1)][ClO₄]$ in aqueous solutions as we hoped that the methyl substituents on the nitrogen atoms would inhibit reaction **(3).**

The complex $[Ni(L^1)][ClO_4]_2$ was synthesized by methylation of the complex $[Ni(L^2)][ClO₄]$ ₂ with MeI^{4b} and recrystallized from triply distilled water. The i.r. spectrum (KBr) showed no N-H stretching absorption and the n.m.r. spectrum was in good agreement with that reported by Barefield.^{4a}

 $[Ni(L¹)]^{2+}$ is polarographically reduced in aqueous solutions at pH *7.0* or 11.5 in a quasi-reversible single-electron process with a half-wave potential of -1.05 V *vs.* S.C.E. (standard calomel electrode), independent of the nature of the supporting electrolyte NaCl, NaClO₄, or Me₄NCl. In all cases **a** small prewave presumably due to adsorption was observed. Similar results were observed in cyclic voltammetric experiments with a hanging mercury drop electrode, indicating that $[Ni(L^1)]^+$ is relatively stable (Figure 1).

Preparative electrolysis was carried out with a mercury pool as a working electrode at -1.2 V *vs.* S.C.E. {solution composition 3×10^{-4} M-[Ni(L¹)][ClO₄]₂, 0.1 M-Me₄NCl, pH *7.0* }. Coulometric calculations proved the one-electron nature of the reduction process. The product has an absorption band with λ_{max} 335 \pm 2 nm and ϵ_{max} 3600 \pm 500 dm³ mol⁻¹ cm-l. After 18 h the absorption at **335** nm had decreased by $\langle 10\%$ indicating t_+ {[Ni(L¹)]⁺} > 100 h under these conditions. \ddagger Thus the results demonstrate that $[Ni(L^1)]^+$ is considerably more stable than the planar form of 1,4,8,11 tetramethyl-1,4,8,11-tetra-azacyclotetradecanenickel(1), which decomposes even in tetrahydrofuran by a relatively fast second-order process,⁶ or $[Ni(L^2)]^+$.^{§2} Polarograms measured in completely reduced solutions show a one-electron oxidation wave close to the $[Ni^{11}(L^1)]$ reduction wave; analysis during

Figure 1. Cyclic voltammograms at a hanging mercury drop electrode at pH 7.0; supporting electrolyte 0.1 \overline{M} Me₄NCl; scan rate 50 mV s⁻¹. The voltammogram for **(A)** was measured directly after the formation of the drop.** **(A)** 3×10^{-4} M-[Ni(L¹)]- $\text{[ClO}_4]_2$; **(B)** 1×10^{-3} m- $\text{[Ni(L²)]}[ClO_4]_2$.

the electrolysis gives a common oxidation-reduction polarographic wave. Bubbling oxygen through the reduced solution resulted in the back formation of $[Ni^{11}(L^1)]$. Acidifying the solution to pH 1.0 with HCl caused decomposition of $[Ni(L^1)]^+$ whereas the use of $HCIO₄$ precipitated a white compound which is stable in the absence of air.

It is of interest that the cyclic voltammogram of $[Ni(L^1)]^{2+}$ (Figure 1) suggests a formal potential of -0.98 V *vs.* S.C.E. for the couple $[Ni(L^1)]^{2+}/[Ni(L^1)]^+$, compared with -1.42 V *vs.* **S.C.E.** for the couple $[Ni(L^2)]^{2+}/[Ni(L^2)]^+$. This result seems surprising, although spectral data suggest that the crystal-field splitting due to L^1 is smaller than that due to $L^2,$ ^{4b} as substitution of the hydrogen atoms bound to the four ligating nitrogen atoms by methyl groups, which are electron donors, is expected to stabilize the higher oxidation state. We suggest that $[Ni(L^1)]^{2+}$ is considerably less stabilized by hydration, owing to its hydrophobic substituents, than $[Ni(L^2)]^{2+}$. A similar effect for analogous complexes in MeCN solution was recently reported.^{Ic}

In order to study fast redox reactions involving $[Ni(L^1)]^+$ we used the pulse-radiolysis technique^{3c} using the linear accelerator at the Hebrew University of Jerusalem; for details, see ref. 7. $[Ni(L^1)]^{2+}$ was reduced by e_{aa}^- and CO_2^- ; in and the rates of these reactions are summarized in Table 1. The electronic spectrum of $[Ni(L^1)]^+$ thus formed is identical to that of the product obtained electrochemically. The rates of reaction of $[Ni(L^1)]^+$ with O_2 , $[Co(NH_3)_6]^{3+}$, and $[Ru(NH_3)_6]^{3+}$ were measured, and these outer-sphere reductions with $[Ni(L^1)]^+$ are about ten times slower than those² with $[Ni(L^2)]^+$, in agreement with their relative formal potentials. However, $[Ni(L¹)]⁺$ does not seem to react with N_2O , possibly owing to

The decomposition of $[Ni(L¹)]⁺$ under these conditions might be due to oxygen penetration into the flow-through optical cells used.

⁹ However, our electrochemical results (Figure **I)** seem to indicate that [Ni(L2)]+ has a somewhat longer half-life than that reported by Tait *ef a1.2*

 \llbracket Argon-saturated solutions containing 2-20 \times 10⁻⁵ M-[Ni(L²)] $[ClO_4]_2$ and 0.1 M -Bu^tOH at pH 7.0 were used for the e_{aq}^- reductions, and argon- or N₂O-saturated solutions containing $2-10 \times 10^{-4}$ M-[Ni(L¹)][ClO₄]₂ and 0.1 M-HCO₂Na at pH 4.7 and 11.5 for the CO_2^- reductions.

^{**} The shape of the voltammogram changes when the solution is in contact with mercury prior to the measurements. The cathodic peak is shifted to lower potentials, *i.e.*, to the hump detected on peak is shifted to lower potentials, *i.e.,* to the hump detected on the cathodic peak in Figure I. The voltammogram then indicates a nearly reversible electrode process. **A** detailed study* suggests that this change in the shape of the voltammogram is due to a surfacecatalysed isomerization of $[Ni(L¹)]²⁺$.

Table 1. Rate constants for the reactions of the nickel complexes of the ligands **L1** and **L2.**

^a This work, units of dm³ mol⁻¹ s⁻¹. ^b From ref. 2.

steric hindrance as the suggested reaction mechanism involves atom transfer.2 Alternatively this might be due to a more positive value of the formal potential for the $[Ni(L^1)]^+/$ $[Ni(L^1)]^{3+}$ couple. The low rate of reduction of $[Ni(L^1)]^{2+}$ by $CO₂$ ⁻ is surprising in view of the relative formal potentials of $[Ni(L^1)]^{2+}$ and $[Ni(L^2)]^{2+}$ and seems to indicate that the reduction² of $[\text{Ni}(\text{L}^2)]^{2+}$ by CO_2 ⁻ proceeds mainly *via* a bridged mechanism, but that of $[Ni(L^1)]^{2+}$ is hindered by steric factors.

In conclusion these preliminary results indicate that $[Ni(L^1)]^+$ is relatively stable over a wide pH range presumably owing to the inhibition of reaction **(3)** by the methyl substituents.

Received, 15th January I982; Corn. **035**

References

- 1 (a) D. C. Olson and *J.* Vasilevskis, *Inorg. Chern.,* 1969,8, 1611; (b) F. **V.** Lovecchio, E. **S.** Gore, and D. H. Busch, *J. Am. Chem. SOC.,* 1974, **96,** 3109; (c) **J.** *Y.* Becker, **J.** B. Kerr, D. Pletcher, and R. Rosas, *J. Electroanal. Chem.,* 1981, **117,** 87.
- **2** A. M. Tait, M. Z. Hoffman, and E. Hayon, *Inorg. Chem.,* 1976, **15,** 934.
- **3** (a) B. Fisher and R. Eisenberg, *J. Am. Chem. SOC.,* 1980, **102,** 7361; (b) a homolytic decomposition of $LNI^{III}-H$, as suggested by a referee, is very endothermic and therefore unreasonable; (c) D. Meyerstein, *Acc. Chem. Res.,* 1978, **11,** 43; (d) M. Freiberg, J. Lilie, and D. Meyerstein, *Inorg. Chem.,* 1980, **19,** 1908.
- 4 F. Wagner, M. T. Mocella, M. J. D'Aniello, **A. H.-J.,** Wangand E. K. Barefield, *J. Am. Chem. SOC.,* 1974, **96,** 2625; (b) F. Wagner and E. K. Barefield, *Inorg. Chem.,* 1976, **15,** 408.
- *⁵***E. K.** Barefield and F. Wagner, *horg. Chem.,* 1973, **12,** 2435; K. **D.** Hodges, R. **G.** Wollmann, E. K. Barefield, and D. Hendrikson, *Inorg. Chem.,* 1977, **16,** 2746; R. Buxtort, W. I. Steinman, and T. **A.** Kaden, *Chimia,* 1974, **28,** 15.
- 6 M. **J.** D'Aniello, Jr. and E. K. Barefield, *J. Am. Chem. Soc.,* 1976, **98,** 1610.
- 7 H. Cohen, L. J. Kirschenbaum, E. Zeigerson, **M.** Jaacobi, **E.** Fuchs, G. Ginzburg, and D. Meyerstein, *Inorg. Chem.*, 1979, **18,** 2763; E. Zeigerson, G. Ginzburg, D. Meyerstein, and L. J. Kirschenbaum, *J. Chem. Soc., Dalton Trans.,* 1980, 1243.
- **8** N. Jubran, G. Ginzburg, and D. Meyerstein, to be published.